Make Problem Based Learning Disappear: Why PBL? Part Two

 

…make PBL [problem based learning] disappear. In an inquiry-based school, it should be nearly indistinguishable from general instruction.

TeachThought.com

Problem based learning, inquiry based learning, question based learning… There are lots of different names for a specific type of classroom activity that places one item, image, expression, or situation in front of a group of kids and asks them to engage with it. The teacher steps back. Instruction is minimal: come up with a question, any question. That’s it. Not what type of question, not what the question needs to pertain to, not how many questions.

As a teacher, that is really hard. And it takes time to let this process happen, and, oh yeah, you need classroom rules like no judging questions, just write them down without changing them, don’t try to answer the questions, just write them down, and every question matters, so write it down even if it sounds silly or stupid.

Because when students start asking questions, curiosity is piqued.

It is okay to promise that as many questions as possible will be answered. It’s okay to go off in a direction that wasn’t in the original lesson plan. Because when students start asking questions, curiosity is piqued. And when that happens, well, all I’m sayin’ is, never underestimate curiosity!

Once students are curious, lessons can turn one of two ways;  you control this knob. You can kill curiosity just as quickly as you can pique it. However, it takes courage to let this curiosity take hold, to guide it gently, and to allow the students to run with their questions.

The students have asked. The cards (one question per) are up on the board, sprinkled around the room, arranged by subject matter… However you feel they should be arranged. What next?

I like this moment. While the questions are being shared, I am gaining new insight into the minds of my charges. What do they know? What connections are being made to the image or situation or equation (not necessarily a math connection, by the way)? How do my students think? Where are the questions going to take us? And my teacherly question… Where are we in relation to the knowledge I want my students to gain from this? Will we get there, or (and this is the scary, let go and teach part) will we get somewhere else just as valuable?!

Making PBL disappear means building this type of student led inquiry into every part of the course and creating a daily attitude of curiosity.

At this point, I would take a moment to address the title of this discourse. Making PBL disappear means building this type of student led inquiry into every part of the course and creating a daily attitude of curiosity. What are we going to explore today? What are we going to learn how to do today? Students come into class prepared to ask questions, questions that they know will be answered.

This is not a pipe dream. This does take a belief on the part of the teacher that the students’ questions are worth exploring, discussing and answering. It also takes a little bit of classroom setup- students need instruction in the rules of the game and, most importantly, the focus for the lesson – that picture, equation, situation, idea – needs to be well-chosen, the possible questions and directions prepared for, and the possible math directions imagined and worked out ahead of time. This kind of lesson takes time to prepare, a commodity in short supply for most of us.

How do we get from using PBLs as sometime specials to a technically invisible way of doing business in the classroom?

The biggest thing I can say is that no teacher has to do this alone. The body of resources is growing by leaps and bounds. There are informational blogs with ideas, examples of lessons, stories of actual class experiences (some with scans of student work), videos, websites, and instructional books. There are multiple teacher groups on Twitter that share ideas and discuss lesson results. These teachers are more than willing to give feedback and help.

Having said that, integrating PBLs into the classroom requires:
1) a knowledge of the standards you want to teach, translated into “I can” statement goals,
2). A willingness to encourage student led questions and discussion,
3) A portfolio of PBL activities that cover one or more standards,
4) the ability to facilitate “what happens next” and use the questions generated by students to unwrap the ideas that will lead to understanding of the standards, AND

5) the courage to let students choose how they will investigate/learn what you are setting before them.

Advertisements

I’m Seeing Dots!

Do you number sense?

What I’m trying to ask is how comfortable are you with numbers? As children, we learn to count, 1, 2, 3… Then we begin to realize a one to one correspondence, that one isn’t just a number, it is a value, a penny or one fork, or one person. The bigger the number, the more items. We learn some rules for numbers: That one plus anything makes one more. That if we take away one, it makes the number smaller. Next thing you know we are adding and taking away all kinds of numbers. Then along comes place value and we learn to carry numbers; there are ones, tens, hundreds, thousands, ten thousands, whew! And for many children, each number becomes a solid thing, no longer fluent, no longer one plus one plus one makes three. Three is, well, three. It means a certain amount, and we no longer see it as individual items making up a whole.

I would like you to try an experiment.

Without counting, take a look at image 1.

20130926-064513.jpg
How many dots do you see?

Now quickly look at image 2. (Remember, no counting!)

20130926-064617.jpg
How many did you see this time?

Now think about how you saw the dots in each image. How did you group them or add them?
Which picture was easier for you? The neatly grouped dots or the randomly spaced ones?

Show the pictures to someone else. They will probably come up with the same number you did. Ask them to describe how they saw the dots, grouped them, made sense of them.

Was their method different? Did you like it better than your method? Will you see the dots differently the next time you look?

Whether you realize it or not, you have just made some new connections about the number eight.

Now solve for x:

4x = 3 + 3 + x

Did your new sense of the number 8 make the problem less complicated? Or did you pull out some algebra skills?

We rarely see dot cards used outside of first, second, or third grade here in the US. I think we may be losing valuable math fluency by not continuing to expose our children to these practices on a regular basis throughout their education. It is especially relevant now, as teachers are asking students to think about the different elements of math problems, asking them to make connections from one set of circumstances to another, expecting them to be able to break apart and re-form numbers like a set of Lego blocks. Yet, from my own observations, we have 7-12 grade students who lack a basic ability to do this.

We give them formulas that have no meaning, theorems for which they do not understand the proofs, and polynomials they struggle to factor or multiply, because they lack the ability to construct and deconstruct numbers. Algebra is difficult because they cannot see that x can be any number. In that exercise above, could there not be more than one right answer? Shouldn’t our kids be curious about that, check for that? (Bravo if you did!!)

Cathy Humphries uses dot card exercises with her 10-12 graders. She has this to say:

“Dot Card Number Talk Commentary:
Cards with configurations of objects, that we often call “dot” card number talks, establish important new principles for mathematics classes. While it may seem that these arrangements of shapes are only for young children, we have found that they are critical for older children – even high school students – because they help to lay the groundwork for changing how students think about mathematics. Dot cards do not suggest procedures that students are “supposed” to follow; instead, they encourage students to think about what they “see” rather than what they are supposed to “do.” This frees up students for learning new ways of interacting in math class.
Some of the things they can learn from dot card number talks:
• Just as people “see” things differently, there are often many ways to approach any mathematical problem.
• Explaining one’s thinking clearly is important. This requires that students to retrace the steps of their answers and learn to use academic language, where possible, to describe what they did to solve the problem.
• It is important for students not only to explain what they did, but why their process makes sense. In the case of dot card number talks, this involves where they “saw” the numbers they used. In the case of arithmetic operations, it involves understanding the mathematics that underlies any procedure that they use.
• The teacher’s job is to ask questions that clarify what the students see rather than how they “should” see.”
Cathy Humphreys.

Boaler, J., & Humphreys, C. (2005). Connecting mathematical ideas: middle school video cases to support teaching and learning. Portsmouth, NH: Heinemann.

Introduce a new fluidity into your classroom. Check out more about dot cards in this piece by Math Coach’s Corner.

If you have good number sense activities resources, I’d be happy to link to them here!