# Asking the right questions of ourselves…

We question our students to elicit and engage, to push their sensemaking, to activate prior knowledge, and to get them thinking about their thinking. But do we question ourselves and our pedagogy with the same focus?

Table taken from National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all.

In the rush to use new ideas, incorporate technology, or just ensure our students are doing math things from the minute they walk through the door, are we giving enough thought to why we are choosing an activity? What is that activity suppose to achieve? Has it earned the time it will take, not only for the students to complete, but for the grading and feedback? In other words, will it move these students further towards the goal?

Learning Targets are Not Just For Kids

My colleagues and I have been asked to share learning targets with our students; to write the daily lesson or goal on the board and go over it, so students know what successful learning looks like.

As you think about what your students will be doing, do you ask yourself just how the activity will provide the experience you want for the student? What will it tell you or your student about their learning? How will it move them closer to understanding? How will it engage the learner to produce the desired result? What will the failure of this activity tell you? Tell your student?

For the math classroom, skill builds upon skill. Knowledge is formed by understanding how the old can be reshaped or used to fit into the new. It’s like reading, but with numbers. In learning to read, we begin to decode shapes that are letters, that make sounds, that can be arranged into words (patterns of letters), that are then arranged into larger groups of sentences to convey information.

In mathematics, we learn our numbers, which instead of sounds convey amounts. At first, these amounts are concrete, as we count fingers or toes or toys or blocks or cheerios. At some point the numbers begin to represent the amount. We put these numbers together into groups that define patterns, and we put these patterns into sentences that convey information. Every time we learn a new concept, we can place that building block in context and do more than we could. A concept in math means we’ve identified a relationship, a cause and effect, a reasoning about how one action effects an outcome. When we understand the connection, we can extrapolate, interpret, compare, contrast, synthesize, and create. All of those things that we say we want our students to be able to do, no matter the subject.

Is this what your materials and lessons are teaching?

Every teacher reading this has bemoaned the lack of time we have in the classroom. How we spend that time often forces us to cut our activities, explorations, and conversations about the material. We have to hit the ‘most important’ standards, or the ‘big ideas’. Yet we know that knowledge is built by exploration, by focusing on a problem or situation, by playing with ideas. But how often have you asked ‘how will this activity increase understanding of the concept?’ ‘What is it teaching?’ ‘How does it allow showing the learning, or mastery?’ ‘Will it allow for connections to what has already been done, or to what is to come?

Is the idea or activity sticky?

By sticky I mean will this be something the student will think about longer than the activity itself. Will a student come in a day or a week or a month later and say, ‘I’ve been puzzling about this idea and I think I finally get it.’ And yes… I believe all of our ideas can be sticky – not necessarily for everybody at the same time. If we are truly giving each part and moment of our lesson thoughtful care, there will be more sticky moments than not. Those moments are what build interest, knowledge, and understanding. One of the best examples of this is the Four Fours activity. My students worked on that for over a week!

How do we get there?

1. Put yourself in your students’ shoes.

Think about what is happening to them daily. When they walk into your class, where are they coming from? Have they had time to process their last class? (Probably not.) Are they looking forward to math or dreading it? Did they do their homework – or even understand it? Is your class a relief, a chore, or an interesting, thought provoking space in their day? As I write this, I see the faces of my students, and can easily see the few that truly look forward to this class – but there are occasions where my lessons have let them down, too!

What do they need from you in that moment, to get their mind off of what has happened up to the moment they walk through your door?

For a start, pretend you are a student and walk into your classroom. Pick up that starter. Take it to a desk and try your own lesson. Where is your student brain? How does it make you feel? Does it do you want it to do? Loosen them up? Assess yesterday’s lesson? Review a skill they need in the main lesson? How will you check the outcome? This shouldn’t be a ‘take up and grade’ – it’s very name implies short, sweet, and to the point. What you want to accomplish must guide what you do. What you do sets the tone for the rest of the class. If the starter isn’t working for you, it isn’t working for them. Stop. Just stop doing what doesn’t work.

One teacher I know

has a great routine. She has trained the kids to pick up a starter (half page, every day) on their way in. Some fill it out. Some don’t. She goes over each problem, quickly working it on the board. She asks a few questions about the numbers or the process. Usually she has to get the class’ attention, many are off task. The kids who knew how to do this are already zoned out. The ones who don’t know how either copy her work down exactly, or don’t write anything. She does this quickly, and in her mind this is circling back around as a review for weak skills or concepts. She is practicing good classroom management by getting kids in their seats and working. She has trained them that math is boring.

During one week, she gave the same material as a starter and as a quiz to check for Learning. To her frustration, it did not result in increased knowledge for those who hadn’t already learned it (and I suspect it was extremely boring for the handful who did!) This is a 15-20 minute activity every day. How could she change this activity to get the desired outcome, i.e. strengthening this skill?

A process is a pattern of activity. A concept is the explanation or reasoning for why we do the process. Teaching a concept should lead to the process. In the interest of time, students often learn the process. Then it’s practice, homework, and a test. Are you teaching process or concept? Are you reviewing process or concept? Are you practicing process or concept? Concept is harder, takes more time and doesn’t work well on a worksheet. It is much more interesting, however. Concept is sticky.

You do not have to reinvent the wheel!

No time to write those magnificent lessons? Have I got a tip for you! You do not have to do this alone! Lessons and resources are out there and so many are FREE. Check out these links (courtesy of Matt Vaudrey and the #MTBoS:

Not only will you find good lessons, you will find teachers who are constantly looking for better ways to share this wonderful world of mathematics!

Here are a few more questions for you to consider, (and which I will be grappling with while planning my next classes):

3. What is my lesson intended to do? How do my materials (problem set, delivery, class activity and structure, timeframe, sensemaking, etc) support this goal?

4. Where are my kids likely to fail? What can I do beforehand to support the weak spots (Starter idea!)?

5. What does the learning of the concept look like? What do I do for those that ‘get it?’ What do I do for those that need more? How will I know (formative assessment). If they don’t start, WHY not? If they don’t finish, WHY not? Do they really know how to do it? Is homework appropriate- i.e. will this truly extend the learning?

6. Does my lesson connect this idea to what they already know? Does it give them a peek into a future idea?

7. When/how will I give them time to process what they’ve done?

8. When will I revisit? How will I revisit? (Yes! Plan for this!)

I leave you with this:

The moment you can really know a student has internalized a concept/learning target is the moment you hear/see them sharing what they’ve learned with another student. Plan for that, too.

# Are you a 1, 2, 3, or a 4? What’s numbers got to do with it?!?

I, along with a couple of other teachers, are piloting a grading strategy that is generating some interesting conversations on a DAILY basis with our students!

We’ve all read that grades do not improve or motivate learning. In fact, once a grade is given, the student assumes that idea is ‘done’ and drops it, moving on to acquire the next grade.

What I am about to share with you has MY KIDS talking about how THEY can improve their learning…

First, I have to give credit for the base of this idea to an amazing educator that I work with every day: Rebecca K. She, of course, credits it to an idea she learned in a workshop some years back. Anyway, she started the year off with a cool bulletin board, that looks something like the image above, which I used to create a powerful way to motivate my babies to take more responsibility for their own learning!

The students I am talking about are your average 9th grade (yes, FRESHMAN!!) students, that run the gamut of every freshman stereotype you’ve ever met. Really. (This includes students with personal learning plans and students whose first language is not English!) AND  we’ve got them talking about growth – THEIR growth – as learners. When we hand back a paper, instead of the ‘crumple it up and put it in the bookbag or the trash’ mentality, the comments are varying forms of, “..tell me what these results mean!”

Here’s how it works:

Four numbers, four learner identities:  1. Novice, 2. Apprentice, 3. Practitioner, 4. Expert

Novice: I’m just starting to learn this and I don’t really understand it yet.

I explain to the students that this is where everybody in class starts out. Algebra I will have lots of things that are new to them, and we expect that they won’t be familiar with the material! We don’t expect them to know it all before we teach it. Sounds obvious, right? Sometimes you have to be explicit with Freshmen. I think that’s where the name originates!

Apprentice:  I’m starting to get it, but I still need someone to coach me through it.

The apprentice is the beginning of the learning phase. When a student gets a 2 on a problem or a whole assignment, they are in the initial learning stages. As a teacher, I’ve just told them (by marking it a 2) that I know they still need help with the concept, and that I will be supporting their learning. This also tells them that they are not there YET – and that they have room to continue learning. Sometimes we have to give kids permission to not know things YET!

Practitioner: I can mostly do it myself, but I sometimes mess up or get stuck.

This is a proud moment for most of my students. That little 3 next to a problem or on a paper, tells them so much more than a traditional grade. This sends them the message that I get it that they’ve got it! This affirms their learning. This affirms their work. This is personal. Better than that, this motivates them to keep going, to keep learning. They ALL want to be….

Expert: I understand it well, and I could thoroughly teach it to someone else.

Isn’t this where we want our babies to be? You know that if they know it well enough to teach it – THEY KNOW IT!! That peer tutoring thing is for real! Please notice that there are TWO parts of this level: knowing and teaching.

How does this work?

My (totally awesome) co-teacher, Stephanie W.,  and I, use the following grading process. Feel free to modify it to fit your students, and what is happening in your classroom. We know that what we are doing is working for our kids – you may want to start with this, and then modify as you see what is working for you.

We give an assignment or quiz. We grade each problem with a 1, 2, 3, or 4. We add up all the grades and divide by the number of items. That gives us a number between 1 and 4. Many times that will generate a decimal, say 1.8 or 2.5, or even 3.8. Here is an important point: we DON’T ROUND UP! We DO EXPLAIN the process to our students. It is important for them to understand that this is not arbitrary. They must own the process for this to work. These conversations happen EVERY time we return an assignment. That’s a GOOD thing!

Our goal for our students is mastery, so unless the resulting average is an actual 2 for example, the child is still a NOVICE (1, 1.2, 1.8, 1.9 – doesn’t matter. They are still a 1). Same with 2 point anything – they are still a 2, same with 3 point whatever – still a 3. The ONLY exception is 3.8 and above. If the student has one or more 4+ answers, with clear justification statements, then, and only then, will we round up to a 4. See below for the PLUS explanation!

Our evaluation goes something like this:

a) Answer that is incorrect, No work shown, or No answer at all: give it a 1.

b) Answer with some work shown (they attempted a solution) but it is incorrect in major ways and answer is incorrect or incomplete; give it a 2 (remember they are still learning and need more help!)

c) Answer given is incorrect, but work is also shown. (OR answer is correct, but NO work shown to support the answer). Student did pretty good, but minor errors and/or mistakes caused the incorrect answer; give it a 3. This student is obviously getting it, but he/she is letting errors get in the way. Maybe they are lazy, maybe in a hurry. The 3 tells them that they are getting it – but they NEED TO BE MORE CAREFUL! (The 3 for NO work shown is to allow us to ensure students are not ‘borrowing’ answers from another student! We are giving them the benefit of the doubt until further notice.)

d) Answer and work is shown and is completely correct. This baby gets the 4!  The student can feel the glow of being an expert. But wait, there’s more! This only satisfies HALF of the description. What about the ‘teaching’ part?

Four “+”? What is Four Plus???

‘Four +’ is that special designation for the child who not only knows the material, but can prove to us that they are able to teach the material to another student. Time dictates that we don’t have the opportunity for EVERY student to demonstrate teaching ability (although we do try to build in those opportunities!). We have explained to our students that the way to demonstrate this ability is to justify the work they’ve shown, with brief written explanations.

Written Justification sets the student up for PROOFS in Geometry

Algebra I is a class of foundations. It is important to teach with an eye to the future courses our kids will encounter, and proofs are some of the most difficult lessons for students. One of the Algebra I standards is to be able to justify the steps taken to solve simple one step equations. This is an important step to understanding that there is a mathematical reason for being ABLE to take that step – and not just because the teacher said so! By building this into the idea of EXPERT, we are modeling the concept that understanding – that is, the realization that there are solid REASONS for why math ‘works’ – is a valuable part of the learning process.

What WORDS do you use to tell a parent how their child is doing in your class?

I know this is just a brief overview of this process, but I wanted to share because I feel it is the first solid step in moving towards talking about GROWTH and LEARNING, instead of grades. I believe it is important that we take the focus off of grades, for students and parents. To do that, we, as teachers, have to stop using GRADES as the unit of measure in communicating with our students and parents. Unfortunately, our grading systems, and I’m talking the actual computer systems we have to use, are not set up to show mastery – they are set up to show GRADES!

I already changed my conversations, my wording, my language,  with my students. It will happen with my conversations with parents in my next phone call/email home, as well. Will YOU?

What’s the downside?

My school still uses a grading system built on averaging traditional grading numbers. That means I can’t just put in 1, 2, 3, 4, or 4+. I have to turn these numbers into a grade between 0 and 100 that will accurately translate and describe my students’ mastery of the curriculum.

My solution is two-fold. The grades in my gradebook are tied to one of the required standards, and each of the above levels is tied to a number that has already been given meaning by how it is used as a grade. While the first is fairly easy to accomplish, the second is based on how parents and students interpret grades. A 100, for example is the ideal. That sends the message that the student has mastery of the assignment, or the course. In fact, anything above 93, in my County school system, is an A, and as such, denotes pretty much the same thing as a 100. Same for a B, or a grade in the 80 range. Those two grades are obviously acceptable to most parents and students. The grade of C is a little more ambiguous. The C denotes that the student is somehow less than perfect, but still passing.  While a student may be GLAD to have a C – it does denote that the student is doing the work and IS mastering the concept – it doesn’t have the same cache’ as the A and B grades.

So how do I reconcile the grades with the numbers?

A novice receives a grade of 65. The Apprentice receives a 70. The Practitioner has earned an 80, and the Expert, a 90. The 4+ student will earn a 100, as long as all problems on the assignment or quiz show justification, evidence that they have not only mastered the concepts, but have gone above and beyond to be able to communicate their knowledge with others.

The final issue I will address here: What happens when a student makes no effort at all. Our students never do that, do they??? In that instance, the student has given us no information on which to base a grade. Effectively, they have NOT TURNED ANYTHING IN. The grade in the book becomes an NTI, and we are made aware that we need to step up our efforts with that student. An NTI is a zero, until the student completes an assignment on that material, and we can assess mastery. From there, the averaging work of the gradebook takes over, and the grade reflects the whole course mastery. Grades in this context are fluid, and can be changed by future mastery as evidenced by quizzes or testing situations.

The system is not perfect, but the teachers with whom this is working believe that we have created a system that truly tells us where our kids are with the curriculum, and allows us to modify our teaching darn near immediately, so that we can address the areas in which they need further help – which is the actual point of all this grading, isn’t it?

Here is the poster we use in our classroom to explain the levels. Our students get their own mini copy for their notebooks. We utilize a small chart of “I can” statements for each unit – no more than 3 – 5 statements – that allow the students to chart their progress. Here is the chart for our Unit 1 standards. The kids get this, too. You can use any “I can” statements you need for your particular units.

At the beginning of each unit, the STUDENTS determine their pre-assess level, the quizzes give them the mid-assess levels, and then the unit tests are the post-assess level. The students keep track of these themselves. We incorporate a running conversation DAILY of what their goals are, where they think they are with these goals, and how they are going to get to the 3 and 4 levels. I have personally found this is a great way to have the students tell me where they are at the end of instructional and practice periods throughout class. I simply ask them where they think they are – 1, 2, 3 or 4. The majority of students are incredibly honest, because we are all speaking the same language. The ability to quickly assess and modify my teaching is been made incredibly easy! Grading has become a process of assessing growth, not despairing over what they don’t know. I LOOK FORWARD to grading the work, knowing most of my students WANT to have a conversation about where they are, and what they need to do to get to the next level. Let me know if you would like the rest of the “I can” levels we are using with this course. I’ll be glad to share!

# Mathematical practices are more important than standards: Eating the Elephant

One really wonderful thing has come from the Common Core Standards: the 8 Mathematical Practices. Now, whether you love, hate or have no real opinion on the Common Core, please hear me out.

The 8 Mathematical Practices (MPs) are designed to produce good thinking, reasoning, defending and critiquing skills, as well as fostering perseverance (that GRIT
you may have been hearing about), and enforcing the idea of accuracy and attention to detail. These just happen to be the skill sets for success – in any field!

It is my observation that students who lack some or all (and many of the students I am teaching this year lack all) of these skills are struggling with learning.

We can say that this is a problem of laziness, we can blame it on years of spoonfed students, we can fuss about how it is next to impossible to change students’ learning (not completely impossible!), but in the end, we have to simply begin to eat this elephant. I believe that focusing on these 8 MPs will allow us and our students to taste success – of all kinds.

At my school, we are encouraged to be consistent: enforcing student dress codes, the tardy policy, class behavior, and other important policies that affect our students. We talk about success and poster-ize all sorts of great pithy sayings. Then we lament the way the students ignore all the great ideas and opportunities.

Why don’t we get consistent in a very specific way: the 8 MPs. Let’s apply them to every subject and evaluate students on how well they utilize these skills in every applicable assignment. Instead of warm and fuzzy quotes about success, make clear statements about the actual actions we require.

Rubrics are a good start – for you and me! What do these 8 MPs look like for your lesson? What will the student be doing? What will you do to facilitate these actions?

Right now, my class is working with Quadratics. For geometry students, this involves vocabulary (standard form, vertex form, parabola, factoring… All the way to identifying the vertex points x and y, and the roots, zeros, and x- and y-intercepts, depending on the application). There are word problems. There is graphing and interpretations of graphs. All of this comes with multiple steps, plugging answers back in to get the next answer, using a different process to get vertex information, identifying that nasty domain, range, max, min, up, down…. Some of the equations can take a full page, or more. And then we ask them to check their answer (and watch their heads explode as they cry, “this is too much work!” Or the class dissolves into disruption!) Did I mention that they must also decide which answer is reasonable? (Distance and time can’t be negative, right?!?)

All I am saying is that if we review the skills needed to navigate that last paragraph, it is pretty clear that without the MPs, our students will struggle. Yet many teachers remain perplexed as to why the students don’t “get it”, even after repeated, differentiated, broken apart, 1-2-3 lessons. I think by focusing on teaching standards we are missing the more important focus on the learning postures of our students. Don’t get me wrong, we do need to identify the focus of the lesson because the students need to know what success looks like. They also need to know what success feels like, and sometimes that feels like impatience, frustration, and trying again and again, but then again, it will also begin to feel like SUCCESS. (Which can be pretty heady stuff!)

My recommendation for “Eating the Elephant” is the very basic answer of “one bite at a time”:

First bite: post the practices on your wall. (Talk with your students- let them tell you what they think the practices mean, and what this will look and feel like during a lesson.)

Second Bite: before and during a lesson, in addition to talking about the focus of the learning, also identify and recognize the practices that you see your students engaging in. A smile, a thumbs up, an encouraging comment; all go a long way towards motivating and keeping students trying.

Third bite: grade for these practices. Let parents know what we need from Johnny and Suzy. That it’s about more than homework and cramming for a test. It is about more than just being able to work 20 identical algorithms without understanding. It is about giving their kids confidence, mining for that long-buried curiosity that will take them farther than anything else we can do as teachers.

Fourth bite: tell your administrators. Ask them to speak directly to these expectations across all disciplines. Let every student “poster-ize” the practice they think will be the hardest one. Put them across the school instead of the slick marketing slogans that students don’t bother reading. Watch as they say to their friends, “that one is mine. I am working on it. My next poster is gonna be the (insert MP# here)!”

My posters go up Monday. I’ll keep you posted on the results. Oh, and could you please pass the salt?!

picture credit:Sarah at Everybody is a Genius blog

# So let’s say a television is falling on your head. Will a bigger TV kill you faster?

You are standing on the sidewalk. Somebody yells, “watch out!” And you look up and realize a television is hurtling towards your head. You have 2 seconds to move out of the way. What floor was the television dropped from?

This is a reverse of the classic egg drop problem, which asks the student to figure out how long it will take an object to fall from a specified height. The formula for gravity and time is usually provided. We are going to turn this lesson on it’s head, literally!

The lesson is designed for two 45 min lesson periods. I’ll give the standards and practices at the end (or maybe I’ll let you tell me which ones this lesson hits!)

The lesson starts with an exploration of gravity and a ‘where does the formula come from’, and moves to the exploration of the above scenario – quickly, before somebody gets smacked on the head by a TV! (The title of the blog is the question that kicks off the gravity part!)

Have the students make conjectures in their own minds. Have the silent thumbs up when they are ready. Pair students up and have them share their conjectures, giving reasons that the other person can articulate. Go around the groups and ask what they decided: what the question was asking, whether a bigger tv would fall faster than a smaller one, give the reason(s) they felt that was true or false.

If your facility offers a one or two story drop (football stadium announcer stairs?) conduct this next experiment empirically.
Or, use this great video called Misconceptions about Falling Objects.”

First, watch only the first part of the video, where the interviewer is asking random people whether a heavier ball will fall faster or the same as a lighter weight ball.

Stop the video before they get to the proof part. Survey your students. See how many agree with the heavier is faster theory. Ask them why. Have them explain their thought process.

At this point, you can take them outside, let them try it themselves with two different weight items, or you can play the rest of the video, or both.
If you get to do the outside drop, bring a stopwatch. Set up some students to drop and some students to time the drop and determine how fast the ball drops. Have the students estimate the height (if you can, measure it ahead of time, so you can work the math first) and come back to the class.

1. To understand that items fall at the same rate, no matter the weight, and to perhaps extend to the connected idea that gravity is a pull that has nothing to do with weight – weight has to do with density of matter. (If you have a wonderful science teacher, maybe she will work on a connected gravity lesson!)
2. Develop an understanding of the parts of the formula used in so many of their quadratic one-variable math problems, as they develop their speed of gravity based on the tests, or in discussion from the information from the video.

I will tell you that the video gives the formula in meters per second. The formula in the Alg II Word problems are generally given in feet per second so take some time here to work the students through a conversion process, so they will see the variations as different ways to write the same formula.

Rest or break here. Debrief the students, let them write out their understanding of the question asked in the title- will a bigger TV kill you faster? See how many students changed or enlarged their views. Have them articulate what changed, or if they thought objects would fall at the same rate, how did what they did support their initial thought.

Pick up the next day with the formulas. Let the students (whole group) come up with thoughts as to how they are different and why one formula might be more appropriate than another.

Now, pose the second scenario:
you are standing on the sidewalk beside a multi-story building. Above your head, someone has knocked a window air-conditioner out of the window. If you don’t move it will land on your head. You have 2 seconds to move. How high up does that window have to be to give you time to get out of the way? If you double the height, does that double the amount of time you have to move?

Have the students each think about the problem individually and observe their ideas. You may need to ask some questions of those students who can’t get started, to help them find an entry point. Ask them if they could draw the problem, or have them list things they will need to know (rate of gravity) to solve the problem. (Working the problem looking for height requires re-arranging the formula, which is why I wanted the students to really understand the parts and where the numbers come from.)

The next step is group discussion. In groups of 3 or 4, have them share their ideas and work together to discuss how they feel they can solve the problem, discuss which version of the formula will be appropriate to use, and details, like the average height of floors in a multi story building.

Encourage through questions some hypotheses, maybe a drop from the second floor. At this point there will be some discussion about how to mathematize the answer. One of the recurring problems for students deals with the square root solutions required to solve quadratics. Students should have already worked through the various ways to solve quadratics, so you will want to listen to the conversations surrounding these issues.

Some students will be able to solve for the square and some will not. Have the student who does solve the square explain his/her understanding of the process. If students in each group come up with differing ideas, let them question, critique, convince, until they can agree on some solution. After all, their life depends on knowing how fast they must move!

As you listen, decide which groups to call on for sequencing purposes. Bring the group together and let each group talk about what information they used to solve the height issue. As students speak, if someone realizes their mistake, let them correct it, then iterate the thought process – why did they think the mistake was reasonable?

Continue to ask questions to guide the students through the ideas, asking students to reiterate what they heard another student saying; asking a student to clarify a point, to dig deeper into the thought process.

They should, of course, come up with two answers, positive and negative. So the next question is which answer makes sense and why? What does the negative answer represent? What would have to happen for the negative answer to make sense?

The students can practice their skills by asking them the same problem, only transferring the location to Mars. If the television dropped from the same height on Mars, would they have more time or less?

Don’t forget to ask about doubling the distance. Let the students confirm whether or not that is true and why.

This is a good time to pull the students together and have students restate the ideas they’ve heard. Watch and listen for evidence of a change in student understanding. Are they making the same errors or different ones?

To cement the knowledge, have this similar problem ready: you are in a boat at the foot of a cliff. You look up and see a man tumble straight down. Develop some different scenarios for the height of the cliff and the time it takes him to fall.

Okay, I won’t make you guess the standards and practices- but if you see any I missed, let me know!
The CCSS task that is directly addressed here is Algebra II: Quadratic Equations in one variable (standard A.REI.4)
The activity supports all eight mathematical practice standards. The various individual, small group and whole group tasks give plenty of opportunity for formative assessment of math skill levels and understandings. The Mars thing – have either an internet access to look up the gravity on Mars, or have it ready and let the students who get done early work on the Mars formula for the rest of the class to use. They can do a mini present on how they got it.

There are sure to be multiple paths students took to get the answers. Let whole group discussion offer opportunities for students to share how they thought about solving. Put the paths on the board and let students compare the paths – they will find ways to add some of these new paths to their own toolbox if skills!

As always – feel free to use, modify, comment, and question. Thanks!