Do you think teaching math causes you to over think??? Almost like “going insane “…NaNa Dunn from a post on Visual Math’s FB page

Oh yeah! I used to dream about my lessons… over and over during the night. I’d wake exhausted. Here’s an example of what I do now…

When you realize the students can’t ‘see’ the thing you are teaching them

My kiddos are learning to write quadratic equations. This requires them seeing patterns of growth. The first lesson in this series was to help them see the growth in a pattern of cubes. I used a YouCubed lesson that involved coloring each growth step. Just that. This exposed several issues. The lesson with numbers was the next day, and I was pleased by the intensity of their interest, but here’s why I think that happened: I had prepared them for what they were looking for.

Color each growth step. Image from Stairs to Squares Gr3-5, YouCubed.org

Quotes taken from the original FB post…

Beth Hanna McManus writes “My 8th graders… totally missed the concept that the altitude to the base of the triangle goes through the vertex and hits the base at a 90 degree angle. I explained this in mathematical terms, in layman’s terms, using words like straight to the base, “shortest distance”, had them draw them on the white boards (checking and helping each drawing) multiple times, had them label triangles. When it came time for homework, no one knew what to do. I flipped out and spent the rest of the day in a dither wondering what is wrong with me that I can’t communicate with these kids…”

When I plan a learning experience, I look for the base skill/image/idea a child needs to be able to have to participate in a lesson. It may be a simple warmup – for the triangle problem above, after realizing they didn’t get it, I might have them draw the altitude, pointing out the way the angle looks, and how it starts in the vertex, in several different triangles. Just that. No math, just letting them learn to see what they are looking for.

Starla Adams writes, “Yes, yes, and yes….says the teacher who is out of strategies to teach long division after Friday. I actually thought I was going a little bit insane for an entire hour.”

Teaching long division is challenging. I’ve worked with 9th graders who do not understand what dividing does. If they don’t have an understanding of partitioning and regrouping, long division is just a nonsensical set of steps that they must follow – and memorize. A warmup using manipulatives (coins buttons beads) to set the stage for dividing into groups would help them understand what they are looking for. Then long division can be taught as a routine to get there.

Another common student skill gap with division is poor factoring skills. A warmup (or preview lesson the day before) with a factoring math problem string like this video from Pam Harris, might help strengthen their math fact fluency.

While working on any new skill that requires factoring, try giving students a factor chart. They won’t be using all their working memory on remembering number facts, but on learning the process of the task at hand.

Learning plans should empower students…

I realized that my 9th graders didn’t yet know that they had the power to create their own understanding. They were waiting for me to tell them what to do. Danielle Love and Kay Butler point out ways to shift the heavy lifting (and learning!) to the students!

As teachers, we spend lots of time creating learning plans. Many of us already know what misconceptions kids have, and what errors are going to get made. So lets plan ahead to expose -and remediate and preview- so that these issues don’t cause student failure during the learning of new material. These little discovery sessions and warmups are critical to building understanding and are often worth every minute of time we spend on them!

By all means, overthink and go crazy, in a most productive way! Math teachers, you rock!! I would love to hear how other teachers prepare for these misconceptions and gaps!

(And no, I don’t have those recurring math dreams nearly as often anymore!😂)

Thanks to Shana McKay of Scaffolded Math and Science, and and this really interesting thread on her fantastic FB Visual Math!

L-Q-E vocabulary (or how to drive your OCD students crazy!)

Algebra I, Unit 5, Compare and Contrast Linear, Quadratic, and Exponential functions…

This simple vocabulary lesson generated a surprising result: my kids thought the end result was too messy, so many of them didn’t want to follow the final step!

The activity uses a simple alphabet mind map. It is a 5×5 grid with a letter of the alphabet in each square. The last square contains X and Y. You can print a copy here, or have the students draw their own.

Here is a simple alphabet mind map.

The standards for this unit were that students should be able to identify linear, exponential, and quadratic functions from equations, graphs, tables, and contextual situations, and be able to compare each function with regard to rates of growth.

To achieve these skills, students needed to be able to identify the key characteristics and key vocabulary associated with each type of function. They also needed to be able to discern small differences in equations, the shape each functions takes when graphed, and the changes in a table that would indicate what type of graph the table would produce. Given contextual scenarios, they needed to identify which type of situation would produce a linear change, a parabolic track, or a classic J-curve from exponential growth or decay.

When we started, they could barely list the key characteristics, much less identify which function was associated with each characteristic, what those characteristics looked like, or how to tell them apart. They needed stronger, more fluent use of the vocabulary!

Step One, The challenge: using each letter of the alphabet, fill in the grid with the names of as many key characteristics of each type of graph as each student could think of. (We’d made lists over the previous several days, along with examples, so I knew they would be able to come up with several familiar words.) I encouraged them to start with any word they could think of that they associated with graphs or equations. As they wrote, I then passed out colored pencils for the second part of the task.

Step Two: After about 10 minutes of individual work, we came together in a large group, and I asked each student to share one item from his/her list. I encouraged the students to add new words they heard to their papers, and to use a different color  pencil than they used to write their initial lists. After going around the room about two times, we asked kids to popcorn choices that they had on their papers that hadn’t been covered. We had a few letters that remained without words, so we again asked for ideas from the whole group that would fit for those letters, reminding the students to stay within the linear, quadratic, exponential, and graphing parameters.

We found that we had to ask a few thought provoking questions to make sure some important terms weren’t left out.

(At this point, because we were talking about why these words were acceptable, what they meant, and how they were related to LQE, I had a pretty strong idea of where my kids needed additional help and lessons!)

As my students shared their words, I wrote them on a poster sized alphabet chart that I had prepared beforehand. I gave the students a few moments to make sure that they copied all the words from the collaborative chart onto their personal charts.

Step Three: each child labeled the outside of their chart with the words LINEAR, QUADRATIC, and EXPONENTIAL.

I explained that we were now going to match each term with the function to which it belonged by drawing a line from the word to the function. I warned them that some words might belong to more than one function!

They each picked a color to use for the line that would connect the appropriate words to LINEAR.  The first word under A, asymptote, was determined to be related to exponential, not linear. Not only did they have to decide which function, they had to say WHY and in what way the word connected with FUNCTION. The word Axis was next. Everyone could get behind that as a graph term that could belong to any of the function types, but we only connected words to one type of function at a time. We would come back to ‘axis’ two more times as we matched words with the other two functions! Colored lines were drawn from Axis to LINEAR. This happened with several more words, before the students began to realize this was going to get messy. I was drawing the same lines on my big poster, but I was totally surprised as students began color coding each word with dots, or making these neat lists on separate pieces of paper, sorting out each of the characteristics, because they didn’t like the tangled mess that was happening on my poster. (I explained that they were actually drawing the map for their brain, not their eyes. They were somewhat skeptical…). ‘I can’t read it,’ was the standard response!

Here was our resulting map!

 

I  encouraged the students to use a different color for each category, and we progressed in order through each function, so no one would end up confused. Throughout the matching, as students popcorned answers regarding which words to connect,  I continued to ask for agreement, disagreement, (thumbs up, thumbs down) and ‘why, how do you know,’ from the whole group. This was a very intense, fast paced portion of the activity, with even some of my most blasé students getting involved!

We followed this activity with a neat card sort, that was another intensive activity in and of itself, and was spread over two days. By the end of these activities, I could tell that more of my students were fine-tuning their selection processes, looking more closely at the details of each equation, graph, or table, and applying the key characteristics lists they’d made to their compare and contrast process!

Here were some lists they made of the key characteristics:

Are you a 1, 2, 3, or a 4? What’s numbers got to do with it?!?

I, along with a couple of other teachers, are piloting a grading strategy that is generating some interesting conversations on a DAILY basis with our students!

We’ve all read that grades do not improve or motivate learning. In fact, once a grade is given, the student assumes that idea is ‘done’ and drops it, moving on to acquire the next grade.

What I am about to share with you has MY KIDS talking about how THEY can improve their learning… 

First, I have to give credit for the base of this idea to an amazing educator that I work with every day: Rebecca K. She, of course, credits it to an idea she learned in a workshop some years back. Anyway, she started the year off with a cool bulletin board, that looks something like the image above, which I used to create a powerful way to motivate my babies to take more responsibility for their own learning!

The students I am talking about are your average 9th grade (yes, FRESHMAN!!) students, that run the gamut of every freshman stereotype you’ve ever met. Really. (This includes students with personal learning plans and students whose first language is not English!) AND  we’ve got them talking about growth – THEIR growth – as learners. When we hand back a paper, instead of the ‘crumple it up and put it in the bookbag or the trash’ mentality, the comments are varying forms of, “..tell me what these results mean!”

Here’s how it works:

Four numbers, four learner identities:  1. Novice, 2. Apprentice, 3. Practitioner, 4. Expert

Novice: I’m just starting to learn this and I don’t really understand it yet.

I explain to the students that this is where everybody in class starts out. Algebra I will have lots of things that are new to them, and we expect that they won’t be familiar with the material! We don’t expect them to know it all before we teach it. Sounds obvious, right? Sometimes you have to be explicit with Freshmen. I think that’s where the name originates!

Apprentice:  I’m starting to get it, but I still need someone to coach me through it.

The apprentice is the beginning of the learning phase. When a student gets a 2 on a problem or a whole assignment, they are in the initial learning stages. As a teacher, I’ve just told them (by marking it a 2) that I know they still need help with the concept, and that I will be supporting their learning. This also tells them that they are not there YET – and that they have room to continue learning. Sometimes we have to give kids permission to not know things YET!

Practitioner: I can mostly do it myself, but I sometimes mess up or get stuck.

This is a proud moment for most of my students. That little 3 next to a problem or on a paper, tells them so much more than a traditional grade. This sends them the message that I get it that they’ve got it! This affirms their learning. This affirms their work. This is personal. Better than that, this motivates them to keep going, to keep learning. They ALL want to be….

Expert: I understand it well, and I could thoroughly teach it to someone else.

Isn’t this where we want our babies to be? You know that if they know it well enough to teach it – THEY KNOW IT!! That peer tutoring thing is for real! Please notice that there are TWO parts of this level: knowing and teaching.

How does this work? 

My (totally awesome) co-teacher, Stephanie W.,  and I, use the following grading process. Feel free to modify it to fit your students, and what is happening in your classroom. We know that what we are doing is working for our kids – you may want to start with this, and then modify as you see what is working for you.

We give an assignment or quiz. We grade each problem with a 1, 2, 3, or 4. We add up all the grades and divide by the number of items. That gives us a number between 1 and 4. Many times that will generate a decimal, say 1.8 or 2.5, or even 3.8. Here is an important point: we DON’T ROUND UP! We DO EXPLAIN the process to our students. It is important for them to understand that this is not arbitrary. They must own the process for this to work. These conversations happen EVERY time we return an assignment. That’s a GOOD thing!

Our goal for our students is mastery, so unless the resulting average is an actual 2 for example, the child is still a NOVICE (1, 1.2, 1.8, 1.9 – doesn’t matter. They are still a 1). Same with 2 point anything – they are still a 2, same with 3 point whatever – still a 3. The ONLY exception is 3.8 and above. If the student has one or more 4+ answers, with clear justification statements, then, and only then, will we round up to a 4. See below for the PLUS explanation!

Our evaluation goes something like this:

a) Answer that is incorrect, No work shown, or No answer at all: give it a 1.

b) Answer with some work shown (they attempted a solution) but it is incorrect in major ways and answer is incorrect or incomplete; give it a 2 (remember they are still learning and need more help!)

c) Answer given is incorrect, but work is also shown. (OR answer is correct, but NO work shown to support the answer). Student did pretty good, but minor errors and/or mistakes caused the incorrect answer; give it a 3. This student is obviously getting it, but he/she is letting errors get in the way. Maybe they are lazy, maybe in a hurry. The 3 tells them that they are getting it – but they NEED TO BE MORE CAREFUL! (The 3 for NO work shown is to allow us to ensure students are not ‘borrowing’ answers from another student! We are giving them the benefit of the doubt until further notice.)

d) Answer and work is shown and is completely correct. This baby gets the 4!  The student can feel the glow of being an expert. But wait, there’s more! This only satisfies HALF of the description. What about the ‘teaching’ part?

Four “+”? What is Four Plus??? 

‘Four +’ is that special designation for the child who not only knows the material, but can prove to us that they are able to teach the material to another student. Time dictates that we don’t have the opportunity for EVERY student to demonstrate teaching ability (although we do try to build in those opportunities!). We have explained to our students that the way to demonstrate this ability is to justify the work they’ve shown, with brief written explanations.

Written Justification sets the student up for PROOFS in Geometry

Algebra I is a class of foundations. It is important to teach with an eye to the future courses our kids will encounter, and proofs are some of the most difficult lessons for students. One of the Algebra I standards is to be able to justify the steps taken to solve simple one step equations. This is an important step to understanding that there is a mathematical reason for being ABLE to take that step – and not just because the teacher said so! By building this into the idea of EXPERT, we are modeling the concept that understanding – that is, the realization that there are solid REASONS for why math ‘works’ – is a valuable part of the learning process.

What WORDS do you use to tell a parent how their child is doing in your class?

I know this is just a brief overview of this process, but I wanted to share because I feel it is the first solid step in moving towards talking about GROWTH and LEARNING, instead of grades. I believe it is important that we take the focus off of grades, for students and parents. To do that, we, as teachers, have to stop using GRADES as the unit of measure in communicating with our students and parents. Unfortunately, our grading systems, and I’m talking the actual computer systems we have to use, are not set up to show mastery – they are set up to show GRADES!

I already changed my conversations, my wording, my language,  with my students. It will happen with my conversations with parents in my next phone call/email home, as well. Will YOU?

What’s the downside?

My school still uses a grading system built on averaging traditional grading numbers. That means I can’t just put in 1, 2, 3, 4, or 4+. I have to turn these numbers into a grade between 0 and 100 that will accurately translate and describe my students’ mastery of the curriculum.

My solution is two-fold. The grades in my gradebook are tied to one of the required standards, and each of the above levels is tied to a number that has already been given meaning by how it is used as a grade. While the first is fairly easy to accomplish, the second is based on how parents and students interpret grades. A 100, for example is the ideal. That sends the message that the student has mastery of the assignment, or the course. In fact, anything above 93, in my County school system, is an A, and as such, denotes pretty much the same thing as a 100. Same for a B, or a grade in the 80 range. Those two grades are obviously acceptable to most parents and students. The grade of C is a little more ambiguous. The C denotes that the student is somehow less than perfect, but still passing.  While a student may be GLAD to have a C – it does denote that the student is doing the work and IS mastering the concept – it doesn’t have the same cache’ as the A and B grades.

So how do I reconcile the grades with the numbers? 

A novice receives a grade of 65. The Apprentice receives a 70. The Practitioner has earned an 80, and the Expert, a 90. The 4+ student will earn a 100, as long as all problems on the assignment or quiz show justification, evidence that they have not only mastered the concepts, but have gone above and beyond to be able to communicate their knowledge with others.

The final issue I will address here: What happens when a student makes no effort at all. Our students never do that, do they??? In that instance, the student has given us no information on which to base a grade. Effectively, they have NOT TURNED ANYTHING IN. The grade in the book becomes an NTI, and we are made aware that we need to step up our efforts with that student. An NTI is a zero, until the student completes an assignment on that material, and we can assess mastery. From there, the averaging work of the gradebook takes over, and the grade reflects the whole course mastery. Grades in this context are fluid, and can be changed by future mastery as evidenced by quizzes or testing situations.

The system is not perfect, but the teachers with whom this is working believe that we have created a system that truly tells us where our kids are with the curriculum, and allows us to modify our teaching darn near immediately, so that we can address the areas in which they need further help – which is the actual point of all this grading, isn’t it?

Here is the poster we use in our classroom to explain the levels. Our students get their own mini copy for their notebooks. We utilize a small chart of “I can” statements for each unit – no more than 3 – 5 statements – that allow the students to chart their progress. Here is the chart for our Unit 1 standards. The kids get this, too. You can use any “I can” statements you need for your particular units.

At the beginning of each unit, the STUDENTS determine their pre-assess level, the quizzes give them the mid-assess levels, and then the unit tests are the post-assess level. The students keep track of these themselves. We incorporate a running conversation DAILY of what their goals are, where they think they are with these goals, and how they are going to get to the 3 and 4 levels. I have personally found this is a great way to have the students tell me where they are at the end of instructional and practice periods throughout class. I simply ask them where they think they are – 1, 2, 3 or 4. The majority of students are incredibly honest, because we are all speaking the same language. The ability to quickly assess and modify my teaching is been made incredibly easy! Grading has become a process of assessing growth, not despairing over what they don’t know. I LOOK FORWARD to grading the work, knowing most of my students WANT to have a conversation about where they are, and what they need to do to get to the next level. Let me know if you would like the rest of the “I can” levels we are using with this course. I’ll be glad to share!

 

 

What do you mean, it “…can’t be solved?!?”

I came across an Algebra I review problem the other day on Classworks. The challenge was to solve a quadratic using the Quadratic Formula. One of the answer choices was “can’t be solved.” Which I did not notice.

I was working with three students who did not understand what to do. Once I wrote out the quadratic formula, (actually, all I had to write was the negative b plus or minus!) they began to remember. One boy immediately told the other two how to find a, b, and c. That required a discussion about standard form, so we had to do a little rearranging of the problem given on the screen. Once we got the formula equal to zero, the second student plugged the numbers into the correct places! The third began offering solutions to various parts. I thought we were doing pretty good! Until we came up with a negative under the radical.

Like the music in Jaws… Dum, de dum, dum… They looked at me, dumbstruck.

“What do we do, Ms. Maxcy?”

I asked them if they had learned about imaginary numbers. (Of course they hadn’t – yet. This was only Algebra I! But sometimes I forget which level I am teaching… Which is another story altogether!!!)

Still not checking the given answer choices, I blithely proceeded to give them a brief ‘reminder’ lesson on real and imaginary numbers. They continued to look at me blankly.

As I magically (to them) unraveled the answer as 2 plus/minus 2i sqrt 11 divided by 3, they stared at me. Then they stared at their answer choices. They looked back at me.

“It’s not there, Ms. Maxcy.”

At this point, admit it, we teachers think, “it’s got to be there, that’s the right answer; why is it not there? Gosh, did I do it wrong?” And then we doublecheck our answer. And then it hit me. This was Algebra I. We don’t teach imaginary numbers. Yet. It was then that I finally looked at the answer choices…

The correct answer was there, but it wasn’t the correct answer at all! 

Right there in front of me, there was the answer that the students were supposed to choose: choice “D) Can’t be solved.” 

Right there in front of me, there was the answer that the students were supposed to choose: choice “D) Can’t be solved.” This is a terrible choice! It’s not the right answer! It’s not a good answer! Okay, so we don’t teach them imaginary numbers in Algebra I, why don’t we just list the result with a negative under the radical as the answer?!? 

The kids get used to seeing the beast (negative radical) and we teach them how to simplify in Algebra II or geometry, depending on your school system. But, please, NOT “can’t be solved”!

That is just setting them up for trouble ahead! Lay the foundations, don’t build a wall that will have to be torn down later. Please!

Rant finished. Thank you for listening.

Math Problem of the Week

I get to be the sponsor for my school’s chapter of Mu Alpha Theta. This is an awesome group! Unfortunately, all but three students graduated last year, and one of those transferred to the new school!😩.

Continue reading “Math Problem of the Week”

Best 1st Day of School?? 

Dateline: Monday, August 10, 2015 Gwinnett County, GA

Today is the day! The streets are filled with yellow buses; sidewalks have filled with backpack-covered children, as if a clutch of turtles are migrating. Cars fill Continue reading “Best 1st Day of School?? “